Antimicrobial activity of Plant derived extracts on disease causing strains of bacteria: *Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa.*

Toyba Jan

(Student of Masters of Zoology Central university, Kashmir). Corresponding author: Dr. Arsheed Ahmad Ganaie, Dr. Ibraq Khurshid.

Abstract:

The need for novel antimicrobial remedies is highlighted by the rising incidence of drug-resistant microorganisms. Medicinal plants have the potential to provide new avenues for fighting pathogenic microorganisms by supplying novel bioactive chemicals. This review looks at the modes of action and chemical variety of chemicals derived from plants that have antibacterial characteristics. It also discusses the inconsistent results of antimicrobial susceptibility tests and the difficulties in optimizing extraction methods, which differ depending on the species of plant. Though more investigation is required to fully understand their pharmacokinetic and pharmacodynamic characteristics, medicinal plant extracts continue to hold promise for the development of antimicrobial agents despite these obstacles. In parallel, this review delves at the background of antibiotic discovery, the emergence of antibiotic resistance, and the processes via which bacteria.

Keywords: Antimicrobial activity, Drug-resistant bacteria, Medicinal plant compounds, Bioactive substances, antimicrobial susceptibility, Antibiotic discovery, Resistance mechanisms, plant-based antimicrobials.

Date of Submission: 04-12-2024 Date of Acceptance: 14-12-2024

I. INTRODUCTION:

Microbes are tiny living organisms that inhabit a wide range of environments, including water, soil, the Earth's crust, and extreme conditions like acidic hot springs and radioactive waste (Madigan et al., 2012). The discovery of microscopic organisms occurred between 1665 and 1683, attributed to pioneers like Robert Hooke and Antoni van Leeuwenhoek (Lane, 2015). Some microbes are harmful and cause illness, while others are essential for maintaining human health (Lloyd-Price et al., 2016). Researchers estimate that the human body hosts around 10,000 different microbial species (Qin et al., 2010). One significant role of gut microbes is aiding digestion, affecting how food is metabolized and stored (Turnbaugh et al., 2006). Microbes also play a vital role in protecting the skin from illness and injury, acting as a first line of defense (Grice & Segre, 2011). There is strong evidence that microbes in the female reproductive tract help protect against diseases (Ravel et al., 2011). Additionally, microbes contribute to the production of essential nutrients like Vitamin K2, particularly menaquinone-4 and menaquinone-7 (Conly & Stein, 1992). In food and medicine, microbes are indispensable for producing items like bread, cheese, yogurt, wine, and medical products like insulin and the HPV vaccine (Buchanan & Gibbons, 1974; Frenkel, 2020). There is a small fraction of millions of microbes on the planet that cause serious illness and even death, and such harmful microbes are referred to as pathogens (Kumar et al., 2014). Among viruses, the influenza virus is the causative agent of the flu, while viral hemorrhagic fevers (VHF) are among the world's most dangerous infections (Ergonal et al., 2018). HIV causes AIDS by interfering with the body's ability to fight infections, and the herpes virus leads to various viral skin infections (Bannister et al., 2006). Fungi like Aspergillus fumigatus cause aspergillosis, a serious lung infection, while Candida albicans commonly infects the skin and mucous membranes (Latge, 1999). Bacteria, including Mycobacterium tuberculosis, which causes tuberculosis, and Pseudomonas aeruginosa, responsible for infections like hot tub folliculitis, also pose health risks (Stover et al., 2000). Streptococcus aureus causes strep throat, and bacteria such as Neisseria gonorrhoeae and Chlamydia trachomatis lead to sexually transmitted infections (STIs), causing symptoms such as itching and genital discharge (Van Grewan et al., 2022). Microbial diseases like tuberculosis, polio, smallpox, and diphtheria once caused dramatic increases in morbidity and mortality rates (Baker et al., 2021). More recently, the 2009 swine flu pandemic, the 2012 MERS coronavirus outbreak, and the 2013-2016 Ebola epidemic in West Africa resulted in significant global health impacts (WHO, 2020). In 2019, bacterial infections were responsible for 13% of global deaths, with E. coli accounting for 8.8% of mortality in India (Murray *et al.*, 2022). In Kashmir, outbreaks of diseases like measles, hepatitis, and influenza have been reported frequently since 2005 (Khan *et al.*, 2013).

Certain bacterial species like *Escherichia coli*, *Staphylococcus aureus*, and *Pseudomonas aeruginosa* are of special interest in clinical microbiology due to their roles in infections and antibiotic resistance (Prajescu *et al.*, 2023).

• *Escherichia coli* is a gram-negative, rod-shaped bacterium with cells measuring 2.0 µm in length and 0.25-1.0 µm in diameter (National Academies Press (US), 1999). It causes a range of diseases including gastroenteritis and urinary tract infections, with symptoms such as severe abdominal cramping, diarrhea, and vomiting (Croxen & Finlay, 2010).

• **Pseudomonas aeruginosa** is a gram-negative, aerobic, non-spore-forming rod bacterium that is notorious for its ability to infect both healthy and immunocompromised individuals (Pang *et al.*, 2019). It is highly adaptable and difficult to treat due to its antibiotic resistance mechanisms and dynamic defenses. The bacterium is typically $0.5-1.0 \mu$ m wide and $1-5 \mu$ m long, with a genome size ranging between 5.2 and 7 million base pairs (Mbp) (Stover *et al.*, 2000). The production of beta-lactamase enzymes, encoded by plasmids like TEM, OXA, and PSE, significantly contributes to its resistance to antibiotics (Oliver *et al.*, 2015). While *P. aeruginosa* rarely infects healthy individuals, it is opportunistic, often colonizing those with weakened immune systems, such as patients with cancer, AIDS, or cystic fibrosis (Lyczak *et al.*, 2000). The virulence factors it produces are capable of causing tissue damage, and infections are often chronic and life-threatening. This pathogen is also associated with severe eye diseases (Fleiszig *et al.*, 2012).

• **Staphylococcus aureus** is a gram-positive, spherical bacterium that is a natural part of the human microbiota (Lowy, 1998). It is a well-known pathogen, responsible for a wide range of infections, from minor skin conditions like impetigo to severe diseases like pneumonia, infective endocarditis, and osteomyelitis (Tong *et al.*, 2015). The *S. aureus* genome, first mapped from the strain NCTC 8325, has approximately 2,900 open reading frames and a G+C content of 33%, with 85% of its DNA being coding sequences (Kuroda *et al.*, 2001). Virulent strains such as methicillin-resistant *S. aureus* (MRSA) have posed significant challenges in both healthcare and community settings due to their resistance to multiple antibiotics (Otto, 2012).

• Antibiotics, a class of antimicrobial agents, have been pivotal in combating bacterial infections since their discovery. Penicillin, discovered by Alexander Fleming in 1928, revolutionized the treatment of bacterial infections (Fleming A; 1929). The greatest medical discovery of the 20th century has been the development of antibiotics for clinical use (Katz & Baltz, 2016). By the turn of the 20th century, it was known that bacteria generate a new and powerful source of antibiotics the world is at higher risk of infections due to the ability of bacteria to develop the antibiotic resistance. Antimicrobial resistance has emerged as a result of the widespread, improper, irregular, and indiscriminate use of antibiotics, rendering many currently prescribed drugs useless (WHO, 2014; Baym *et al.*, 2015; Davies and Davies, 2010). It is anticipated that by 25 years, nearly all bacteria will be resistant to the majority of pharmaceutical antibiotics (Kaur Sodhi and Singh, 2022; Murray *et al.*, 2022). Due to this rising global issue the world has shifted its interest to natural plant products for inhibiting the activity of bacteria or to combat resistance issue.

• Plant extracts, including *Azadiracta indica* (Biswas *et al.*, 2002), *Curcuma longa* (Kim *et al.*, 2014), *Pisidium guajava L.* (Lutterodt, 1999; Ahmad and Ansari., 2001), *Salvia officinalis L.*, and *Ziziphus spina-Christi* (Shahat *et al.*, 2001), all have medicinal properties. These findings suggest that plant extracts with antimicrobial properties could serve as promising candidates for the development of natural antimicrobial agents. They offer a potential alternative to synthetic antibiotics, especially in the context of increasing antibiotic resistance. Additionally, these extracts could be integrated into natural preservative systems for food and cosmetics, contributing to the reduction of microbial contamination and spoilage. Despite the promising results, several limitations were noted. The variability in antimicrobial potency among different extracts and preparations highlights the need for standardization in extraction methods and concentration.

• Moreover, the mechanisms underlying the antimicrobial activity of these plant extracts are not fully understood, warranting further investigation to elucidate how these compounds interact with microbial targets. Future research should focus on exploring the synergistic effects of plant extracts when used in combination with conventional antibiotics. This method could enhance the efficacy and stability of these antimicrobial agents. Clinical trials are also necessary to evaluate the safety and effectiveness of these extracts in real-world applications, providing a clearer understanding of their potential therapeutic benefits. Overall, the antimicrobial activity of plant extracts offers a valuable avenue for developing natural alternatives to conventional antibiotics. As research progresses, these natural products could play a crucial role in addressing the challenges of antimicrobial resistance and promoting health through sustainable and effective treatments.

Antimicrobial activity of Plant derived extracts on disease causing strains of bacteria: ..

II. REVIEW OF LITERATURE:

1. ANTIBIOTICS:

From the French terms "antibiose" and "antibiotique," which were defined by Vuillemin in the late 19th century to describe compounds that exert harmful consequences on living things, especially microbes (Laskin and Laskin, 2002). Later on, in 1947, Selman A. Waksman gave a thorough explanation of antibiotics as substances created chemically by microbes with the ability to hinder the development and cause the demise of microorganisms such as bacteria (Waksman, 1947; Sodhi and Singh, 2022). The earliest known medical record is the Eber's papyrus, which dates to 1550 BC and lists therapeutic soil and moldy bread among its treatments (Hass, 1999). An Anglo-Saxon recipe from 1000 years ago has also recently been shown to kill MRSA (methicillin-resistant Staphylococcus aureus) (Harrison, 2015). Paul Ehrlich is largely credited with developing the synthetic arsenic-based pro-drugs salvarsan (salvation arsenic) and neo-salvarsan approximately 100 years ago to treat Treponema pallidum, the causative agent of syphilis (Gelpi et al., 2015). The discovery of penicillin, which Alexander Fleming witnessed on a contaminated Petri dish in 1928, significantly eclipsed the usage of sulfonamides, which were the first really effective, broad-spectrum antimicrobials in clinical use and are still in use today (Fleming, 1929). It was Louis Pasteur, who postulated that germs could release substances capable of destroying other microorganisms (Brunel, 1951). By the turn of the 20th century, it was known that bacteria could produce diffusible and heat-stable chemicals (Frost, 2016) and their potential to combat infectious diseases had been investigated. Pseudomonas aeruginosa (then known as Bacillus pycyaneus) extract was used to treat hundreds of patients by Emmerich and Low in the 1890s, in what is arguably the earliest documented therapeutic use of an antibiotic. This extract, known as pyocyanase, was in useuntil the 1910s (Emmerich and

Low, 1899). The majority of antibiotics undergoing clinical trials today are not novel classes of antibiotics, but rather are synthesized or recognized classes of NP compounds. The genus Streptomyces produced half of all antibiotics discovered between 1945 and 1978 (Embly, 1994). There are no. of theories suggesting that soil microbes produce several NP antibiotics. The most plausible hypothesis is that these NP antibiotics serve a variety of purposes in these microbes, including using chemical weapons to eliminate rivals in the ground, either as signalling molecules to close relatives or to facilitate connections with eukaryotic host, they can be either offensive or defensive in their predation (Seipke, 2012) (Klassen, 2014; Traxler and Kolter, 2015). The greatest medical discovery of the 20th century has been the development of antibiotics for clinical use (Katz and Baltz, 2016).

According to Sodhi and Singh (2022), there are four main mechanisms by which antibiotics work. These mechanisms include the inhibition of DNA replication (Fabrega *et al.*, 2009), protein biosynthesis (Tenson *et al.*, 2003), cell wall biosynthesis (Cho *et al.*, 2014) and folic acid metabolism (Donnelly, 2001).

1.1. Antibiotics inhibit DNA replication: The process of making duplicate copies of DNA is called DNA replication (Gilbert, 2001). The replication process involves several enzymes to carry out synthesis of two new DNA strands complementary to old DNA, enzymes like DNA polymerase (Li and Araki, 2013), DNA helicase, DNA gyrase (Alt *et al.*, 2011) are involved. Certain antibiotics inhibit replication by affecting activity of these very crucial enzymes.

1.2. Antibiotics inhibit protein biosynthesis by targeting the ribosomal 30S or 50 S subunits which includes Aminoglycosides antibiotics whose target is the 16s rRNA of the 30s, which they bind to via hydrogen bonds. This binding inhibits protein biosynthesis before it can be completed (Vicens and Westhof, 2003), Tetracycline antibiotics which targets the highly conserved sequence of the 16S rRNA present in the ribosomal 30S subunit, Chloramphenicol antibiotics which inhibit peptidyl transferase, an enzyme located on the 50S ribosomal subunit that is necessary for protein synthesis. This inhibition prevents t-RNA from connecting to the ribosomal A site, leading to the inhibition of protein synthesis (Syroegin *et al.*, 2022), Macrolide antibiotics and Oxazolidinone antibiotics also bind to 50S ribosomal subunit and inhibit protein synthesis.

1.3. Antibiotics inhibit folic acid metabolism where Sulfonamide antibiotics target dihydropteroate and trimethoprim antibiotics target dihydrofolate reductase enzymes in the pathway (Capasso and Supuran, 2014).

1.4. Antibiotics inhibit cell wall synthesis which involves Beta lactams antibiotics comprising all cephalosporins and penicillins having the beta-lactam ring chemical structure (Fernandes *et al.*, 2013). Because of their unique structure, they can bind to enzymes that cross-link peptidoglycans, like transpeptidase and carboxypeptidase, which inhibits the formation of bacterial cell walls and prevents cross-linking (Cho *et al.*, 2014). This inhibition of cell wall production results in the bacterial cell's death (Cho *et al.*, 2014). Glycopeptide antibiotics prevent cross linking of Precursors of peptidoglycan by creating non-covalent connections with the terminal carbohydrates. The process eventually results in the breakdown of bacterial cell walls, which causes the cells to be destroyed and eliminated (Kang and Park; 2015).

Source: https://doi.org/10.3390/antibiotics11101417 Fig.1: Mechanism of Antibiotic action of antibiotics.

Table 1: All classes of clinically used antibiotics and their source				
Class	Discovery	Introduced	Example (and producing	Molecular target
	reported	clinically	organism)	
Aminoglycosides	1944	1946	Kanamycin A	Protein synthesis: 30S
			(Streptomyces	ribosomal subunit
			kanamyceticus)	
Tetracyclines	`1948	1948	Tetracycline (Streptomyces	Protein synthesis: 30S
			aureofaciens)	ribosomal subunit
Amphenicols	1947	1949	Chloramphenicol	Protein synthesis: 50S
			(Streptomyces venezuelae)	ribosomal subunit
Macrolides	1952	1952	Erythromycin	Protein synthesis: 50S
			(Saccharopolyspora	ribosomal subunit
			erythraea)	
Streptogramins	1953	1965	Pristinamycin	Pristinamycin (Streptomyces
			(Streptomyces	pristinaespiralis subunit.
			pristinaespiralis	
Polypeptides	1939	1941	Gramicidin A (Bacillus	Cell wall: forms ion channels
			brevis)	that increase the
				permeability of the bacterial
				cell membrane.
Penicillins	1929	1943	Semi-synthetic derivative	Cell wall synthesis:
			of penicillin (Penicillium	penicillin-binding proteins
			chrysogenum).	
Sulfonamides	1932	1936	Mafenide	Folate synthesis: inhibition
				of dihydropteroate
				synthetase.
Oxazolidinones	1987	2000	Linezolid	Protein synthesis: 50S
				ribosomal subunit.

2. MECHANISM OF ANTIBIOTIC RESISTANCE:

Resistance is more likely to develop when a patient is unable to obtain the antibiotic concentration required to either suppress or kill the bacterium (Tenovar, 2006). A century of advancements in healthcare and the accomplishment of sustainable development objectives are seriously threatened by the global epidemic of antibiotic resistance, according to Dr. Tedros Adhanom Ghebreyesus, CEO of the World Health Organization (WHO) (Sarkar et al., 2021). Antimicrobial resistance has emerged as a result of the widespread, improper, irregular, and indiscriminate use of antibiotics, rendering many currently prescribed drugs useless (WHO, 2014; Baym et al., 2015; Davies and Davies, 2010). It is anticipated that by 25 years, nearly all bacteria will be resistant to the majority of pharmaceutical antibiotics (Sodhi and Singh, 2022; Murray et al., 2022). Additionally, experts estimate that by the middle of the twenty-first century, antimicrobial resistance-related mortality could account for 10 million deaths annually, up from the present total of over 700,000 (Romandini et al., 2021). According to WHO, microbes exhibiting highest trend in resistance observed in 2017 are as; Acinobacter baumannii, Pseudomonas aeruginosa, Enterobacteriaceae, Enterococcus faecium, Helicobacter pylori, Salmonella species, Campylobacter species, Staphylococcus aureus, and Nisseria gonorrhoeae. Bacteria employ three primary mechanisms to counteract the effects of antibiotics (Zhou et al., 2015). Antibiotic resistance can be acquired by microorganisms through exposure or can be innate (Premlatha, 2019). Gene mutations or direct transfer of resistance genes can lead to the development of resistance (Sodhi et al., 2023). These genes can be carried on plasmids (mobile genetic elements) and transmitted through conjugation (Sodhi and Singh, 2022; Shree et al., 2023) alternatively, equivalent DNA can be transferred directly through transformation (Shree et al., 2023) or similar DNA can be transferred through bacteriophages (Kaur Sodhi and Singh, 2022; Shree et al., 2023), a process known as transduction. Genetic material, particularly genes resistant to antibiotics, can spread quickly even amongst bacteria of different species (Džidić et al., 2008). According to reports, biofilm development (Shree et al., 2023) and heavy metals (Sodhi et al., 2023) promote the spread of antibiotic resistance in bacteria.

THE MECHANISMS ARE AS FOLLOWS:

Bacteria prevent antibiotic accumulation in their cells: Gram-negative bacteria have porin channels 1. in their outer membrane (Kang and Park, 2015) which acts as gatekeepers allowing only certain antibiotics like B-lactams and quinolones to enter the bacterial cell. By reducing these bacterial porins it can hinder the entry of these antibiotics into the cell, leading to increased resistance to these drugs (Darby et al., 2023). Also, Bacterial cytoplasmic membranes contain efflux pumps, which are essential for preserving the solute balance inside of bacterial cells. Nevertheless, by removing medications from bacterial cells before they can reach their intended targets, these pumps also contribute to antibiotic resistance (Džidić et al., 2008).

2. Bacteria modify the target molecule of antibiotics: Antibiotics are intended to bind to certain molecules, but even minute changes can prevent them from doing so, which can result in the development of antibiotic resistance (Kang and Park, 2015; Shree et al., 2023). Antibiotics such as aminoglycosides, tetracycline, macrolides, chloramphenicol, lincosamides, and streptogramin (Tenover, 2006; Fernández et al., 2023) affect protein production by modifying their ribosomal 30S or 50S subunits (Sodhi and Singh, 2022; Sodhi et al., 2023). Changes in the structure or function of transpeptidases enzyme also known as Penicillin-Binding Proteins (PBPs) which is responsible for crosslinking peptidoglycan precursors in order to build bacterial cell wall can lead to bacterial resistance to these drugs (Sodhi and Singh, 2022; Sodhi et al., 2023). The enzymes DNA gyrase and topoisomerase are involved in DNA replication (Hirsch and Klostermeier, 2021). Because these two enzymes are especially targeted by quinolone antibiotics, structural changes to them may result in bacterial resistance to the antibiotics (Fabrega et al., 2009). Tetracycline antibiotics are known to target the ribosomal 30S subunit, but the ribosome has defense mechanisms that can resist their action (Kang and Park, 2015). Changes to this D-alanyl-D-alanine residue have the potential to make bacteria resistant to medications that work against it (Dzidic et al., 2008). Mutations in the rpoB gene, which encodes the beta-subunit of RNA polymerase, can confer resistance to rifampicin (Patel et al., 2023) which is common antibiotic used to treat bacterial infections.

3. Bacteria inactivate the antibiotic by enzyme: Three key enzymes are responsible for antibiotic inactivation and these areas; first is Beta-lactamases enzymes have the ability to break down all B-lactam antibiotics that are bonded with ester and amide thus provide resistance to bacteria that produce this very enzyme (Fernandez-Billon *et al.*, 2023). Secondly, Aminoglycoside modifying enzymes (AGES) have been found to prevent the attachment of aminoglycoside antibiotics to their ribosomal target (Strateva and Yordanov 2009) and lastly Chloramphenicol-acetyl transferases enzymes cause acetylating of hydroxyl group of antibiotic Chloramphenicol resulting in an altered form of the antibiotic that is unable to bind to its ribosomal target. Bacteria possessing these enzymes are resistant to chloramphenicol antibiotics, rendering them ineffective (Varela *et al.*, 2021).

Source: https://doi.org/10.3390/biomedicines8100405 Fig. 2: Different Mechanism of Antibiotic Resistance.

3.Antimicrobial activity of different herbal plant extracts:

Infectious diseases continue to be a major worldwide health concern, accounting for 41% of all disease cases, as assessed in Disability-Adjusted Life Years (DALYS) (Noah and Fidas, 2000). One of the primary causes of this issue is the global spread of acquired bacterial resistance to antibiotics, which poses a major threat to public health worldwide today (Chopra, 2000) and results in both epidemics and pandemics of antibiotic resistance (Chanda *et al.*, 2010, Osman *et al.*, 2012). The issue of antibiotic resistance has led to a shift in focus towards biologically active components extracted from plant species that are used in herbal medicine. These components have the potential to generate a new and powerful source of antibacterial and antifungal activities. (Maiyo *et al.*, 2010; Erfan and Marouf, 2019). The capacity of plants to produce several secondary metabolites with antibacterial activity from very complicated structures is linked to their antimicrobial qualities (Matasyoh *et al.*, 2009; Souza *et al.*, 2005). These compounds are present in the roots, stems, leaves, flowers, fruits, and

seeds of plants. They have been shown to have good inhibitory effects on foodborne bacteria and fungi in addition to other advantageous qualities like food preservation, anti-aging, antioxidant, and anti-cancer properties (Masyita et al., 2022). To increase antimicrobial activity against a variety of microorganisms, natural antimicrobial compounds can work alone or in conjunction with antibiotics (Fazley et al., 2016; Fazley et al., 2018). It is well known that Azadiracta indica (leaf, bark, and seed) has antiviral, antibacterial, and antifungal properties against a variety of pathogenic microorganisms (Biswas et al., 2002). It has been demonstrated that neem's leaf, bark, and seed oil all have a wide range of pharmacological actions, such as anti-inflammatory, antimutagenic, anticarcinogenic, antioxidant, antimalarial, antihyperglycemic, antiulcer, and anti-diabetic qualities (Talwar et al., 1999). In India, China, and South East Asia, turmeric (Curcuma longa) is widely used as a spice, food preservative, and coloring agent. The rhizome of C. longa contains a variety of sesquiterpenes and curcuminoids that have been identified and linked to a broad range of biological activities, including wound healing (Maheshwari et al. 2006), anticancer (Kim et al. 2012), antibacterial activity (Gupta and Sadhana 2005; Naz et al., 2010), and anti-inflammatory (Sandur et al., 2007; Aggarwal and Harikumar 2009). A fruit plant in the Myttacea family, guava (Pisidium guajava L.) is used to treat and prevent diarrhea (Lutterodt, 1989; Alnieida et al., 1995). It also exhibited strong antibacterial activity against bacteria that cause food-borne diarrhea, such as Pseudomonas, Shigella, and Staphylococcus species (Alnieida et al., 1995, Jaiarj et al., 1999). In addition, guava is used as an antibacterial and anti-inflammatory to treat respiratory conditions, diabetes, hypertension, pain fever, gastroenteritis, diarrhea, and dysentery (Gutierrez et al., 2008). Salvia officinalis L., a fragrant herb belonging to the Lamiaceae family, is utilized in conventional medicine to address various conditions such as oral and throat inflammation (Baricevic et al., 2001). It also functions as an antimutagenic and anticarcinogenic agent (Craig, 1999; Simic et al., 2000). According to Loannides (2002), it is also used as a diuretic, tonic, local styptic, antibacterial, antifungal, and pain reliever for spasms. A plant in the Rhamnaceae family, Rhamnus (Ziziphusspina Christi) was used in Egyptian folk medicine to treat a variety of conditions, such as diarrhea, diabetes, and gastrointestinal tract disorders. Its extracts also demonstrated antiviral, antifungal, and antibacterial properties (Shahat et al., 2001). In addition to being used to cure fever and headaches, mulberries (Moursalba L.) can also be used to treat chronic digestive tract illnesses and increase appetite. Hepatitis and chronic gastritis are two other conditions it is utilized to cure. Oedema, dyspepsia, cough, and oligurea can all benefit from it (Sunil and Ammani, 2009). El-Beshbishy et al. (2006) reported that M. alba had anti-inflammatory, antiviral, antibacterial, and antioxidant effects based on recent investigations. The pharmaceutical application of olive tree (Oleaeuropaea L.) leaves is extensively investigated; the leaves are significant due to their secondary metabolites, such as secoiridoid chemicals, which have hypotensive and hypoglycemic properties (Hansen et al., 1996) (Gonzalez et al., 1992). According to a number of studies, plants can ease arrhythmia, reduce blood pressure, and stop intestinal muscle spasms (Samuelsson, 1951; Garcia et al., 2000). There have been publications on the use of cranberry juice (Vaccinium macrocarpon) and bearberry (Arctostaphylos ura-ursi) to treat urinary tract infections, and broad-spectrum antimicrobial agents include garlic (Allium sativum), tea tree (Melaleuca alternifolia), and lemon balm (Melissa officinalis) (Joshi, 2017). Myrtus communis showed significant effectiveness against Pseudomonas aeruginosa. The oils from tea trees (Melaleuca alternifolia) and carrots (Daucus carota) exhibit antibacterial action against Mycoplasma pneumoniae and Helicobacter pylori, respectively (Wangchuk et al., 2011).

The majority of bioactive molecules generated from plants that have therapeutic effect are secondary metabolites. Plant metabolism produces secondary metabolites, which can be intermediate or final products (Stefanovic, 2010). The structure, quantity, and location of substituent groups, the existence of glycosidic connections, the alkylation of OH groups, the geography and climate of the area of origin, and other factors all contribute to their broad range of antimicrobial action. In fact, the antibacterial action of bioactive secondary metabolites varies depending on the kind and concentration of the microbial strains they affect (Merkl *et al.*,2010; Arima *et al.*,2002; Assob *et al.*,2011).

Plant Derived Drugs/Molecules	Plant Species	
Aspirin	Filipendula ulmaria (L.) Maxim	
Codeine	Papaver somniferum L.	
Papaverine	Papaver somniferum L.	
Colchicine	Colchicum autumnale L.	
Digoxin and digitoxin	Digitalis purpurea L.	
Cannabidiol	Cannabis sativa L.	
Tetrahydrocannabinol	Cannabis sativa L.	

 Table 2: Bioactive molecules derived from respective plant species.

Antimicrobial activity of Plant derived extracts on disease causing strains of bacteria: ..

Vinblastine and vincristine	Catharanthus roseus (L.) G. Don
Artemisinin	Artemisia annua L.
Galantamine (Reminyl [®])	Galanthus woronowii Losinsk
Apomorphine hydrochloride (Apokyn [®])	Papaver somniferum L
Tiotropium bromide (Spiriva [®])	Atropa belladonna L.
Paclitaxel (Taxol [®])	Taxus brevifolia Nutt.
Paclitaxel	Taxus brevifolia Nutt. & Taxus chinensis
	(Pilg.) Rehder
Camptothecin	Camptotheca acuminate Decne
Allicin (diallylthiosulfnate)	garlic (Allium sativum L.)

4. MECHANISM OF ACTION OF PLANT DERIVED EXTRACTS:

There are various ways in which these chemicals can impact the microbial cell. Bioactive substances generally target the cytoplasmic membrane as their major target, altering its permeability, functioning, and structural integrity in various way (Stefanovic, 2012). Plant extracts may naturally include EP inhibitors in their composition, according to several suggestions. It has been proposed that the composition of plant extracts may include EP inhibitors (Savoia, 2012). One of the most promising modes of action for bioactive chemicals against MDR pathogens has also been described as the disruption of normal cell communication, or quorum sensing (QS). In addition to being chemically stable enough to withstand the metabolic and disposal processes of the host organism, QS inhibitors should be able to reduce the expression of QS-controlled genes Savoia, 2012; Radulovic et al., 2013; Saleem et al., 2010). Certain substances have the ability to alter or block protein-protein interactions, making them useful regulators of the immune system, mitosis, and apoptosis (Vadhana et al., 2015). Furthermore, they can disrupt or prevent the formation of biofilms, which provide pathogens with a protective advantage during infection (Lau and Plotkin, 2013) interfere with intermediate metabolism (Vadhana, et al., 2015) and cause the coagulation of cytoplasmic components (Omar et al., 2017) Medicinal plant extracts include several antiviral components that interact with distinct viral proteins at different phases of the virus's reproduction (Rajasekaran et al., 2014) Based on the chemical structures, chemical composition, biosynthetic pathway, or the solubility of the compounds extracted from plants are classified into several main groups that include alkaloids, phenolic compounds, sulfur-containing compounds, coumarins, terpenes/essential oils, and lectins and polypeptides (Kabera et-al., 2014; Alamgir, 2017).

Source: https://doi.org/10.1007/s13399-023-04856-9 Fig.3: Possible antimicrobial mechanisms of action of plant extracts.

5. INTERACTION BETWEEN PLANT EXTRACTS AND ANTIBIOTICS:

Medicinal plant extracts have shown significant potential in enhancing the efficacy of conventional antibiotics, particularly when used synergistically. Studies have demonstrated that plant-derived compounds, such as α -mangostin from mangosteen fruit, can inhibit bacterial β -lactamase enzymes, reactivating β -lactam antibiotics in resistant bacterial strains (Phitaktim *et al.*, 2016). These plant extract-antibiotic combinations can significantly reduce the minimum inhibitory concentration (MIC) of antibiotics, a phenomenon termed resistance-modifying activity (RMA) (Gibbons *et-al.*, 2003) (Al-hebshi *et al.*, 2006). Synergistic effects are observed when plant extracts increase antibiotic permeability or inhibit efflux pumps, allowing higher antibiotic accumulation in bacterial cells, as seen with isoflavones from *Lupinus argentens* enhancing the activity of berberine and norfloxacin (Morel *et al.*, 2003). Additionally, combinations of plant extracts and antifungals,

such as ketoconazole with *Agastache rugosa* essential oil, have shown enhanced antifungal activity (Shin, 2003; Aiyegoro et al., 2009) However, pharmacokinetic and pharmacodynamic interactions, such as synergism or antagonism, depend on specific plant extracts, antibiotics, and their concentrations (Aiyegoro et al., 2009). For example, *Camellia sinensis* extract with nalidixic acid reduced the MIC eightfold against *Salmonella Typhi*, (Farooqui *et al.*, 2015) while thymol exhibited antagonism with penicillin against MRSA (Gallucci et al., 2006). Understanding both synergistic and antagonistic effects is crucial to maximizing the benefits of these combinations (Oliveira *et-al.*, 2006) (Van Vuuren *et al.*, 2009).

6. CHALLENGES OF USING PLANT EXTRACTS FOR ANTIMICROBIAL PURPOSE:

Medicinal plant extracts offer a natural and often safer alternative to synthetic antimicrobials, providing accessible, cost-effective treatment options with significant therapeutic potential (Ghosh *et-al.*, 2008) (Pandey and Kumar, 2012). They can be particularly valuable for addressing issues like drug resistance and side effects associated with conventional medications (Pandey and Tripathi, 2014) (Ingle *et-al.*, 2017). However, several challenges hinder their effective use as antimicrobial agents. Firstly, the current approval rate of antibacterial compounds derived from medicinal plants does not fully reflect their potential. The lack of well-controlled, double-blind toxicological and clinical studies often leaves a gap in proving their efficacy and safety (Deutch, 2017) (Calixto, 2000). Additionally, the quality of plant extracts can be compromised by factors such as adulteration, poor cultivation practices, lack of standardization, and inadequate storage, all of which can affect the development of new antimicrobials (Njume and Goduka, 2012). Variability in plant extract composition due to factors like harvest season, cultivation region, and processing methods adds to the complexity. Differences in local climate, including rainfall and humidity, can alter the chemical profile of the same plant species grown in different locations, and climate change further exacerbates these variations (Radulović *et-al.*, 2013)

Moreover, understanding the complex interactions among the numerous compounds in medicinal plants is challenging. Isolating and studying single compounds often requires extensive resources and can be time-consuming. Rediscovery of compounds from various sources and ensuring standardization, stability, and quality control remain significant hurdles (Rodrigues and Barnes, 2013). The potential for synergistic effects among compounds within a plant extract also presents difficulties, as current technology to study multiple compounds targeting various biological pathways is still developing. Additionally, logistical issues such as obtaining access to plant species and navigating differing regulations for plant collection and export/import further complicate research efforts (Bhardwaj et al., 2018). Plant extracts can contain hundreds or even thousands of compounds, making it difficult to identify which ones are responsible for antimicrobial effects (Wagner and Ulrich-Merzenich, 2009) (Efferth and Koch, 2011) (van Vuuren and Viljoen, 2011). Another significant hurdle is assessing the toxicity of medicinal plant extracts, as many have not been evaluated by regulatory agencies like the U.S. Food and Drug Administration (Stermitz et al., 2003) (Kengni et al., 2016). Without official toxicity data, the risk of adverse effects remains a concern, emphasizing the need for strict regulation and quality control of plant extracts. Financial constraints and limited high-quality research further complicate the understanding of structure-activity relationships of individual compounds (Mahmood and Mahmood, 2013).

7. Conclusions:

The antimicrobial activity of medicinal plants offers a promising avenue to address the escalating problem of antimicrobial resistance. This potential emphasizes the urgent need to identify and isolate novel bioactive compounds from medicinal plants, many of which remain unexplored. The diverse range of these compounds demonstrates significant therapeutic potential as antimicrobials and as modifiers of antimicrobial resistance. However, harnessing this potential presents several challenges. Comprehensive in vitro and in vivo testing are crucial to ensure that the selected plant-derived compounds are both effective and non-toxic. Additionally, understanding and managing the potential synergistic or antagonistic interactions among compounds within and between plant extracts is a major challenge. Advancements in biotechnology are expected to enhance our ability to analyze the chemical composition of medicinal plants more deeply. Developing more sophisticated techniques for extraction, fractionation, and identification of bioactive compounds with varied chemical structures and mechanisms of action will be beneficial. Standardizing extraction methods and in vitro testing protocols could make the search for new antimicrobials more systematic and facilitate result interpretation. Future studies should also focus on reference models to better understand plant extract mixtures. Further research is needed on the mechanisms of action of these compounds, their interactions with antibiotics or other medicinal agents, and their pharmacokinetic and pharmacodynamic profiles. This review and the identified challenges should guide efforts to develop efficient, successful, and straightforward methods for utilizing medicinal plants as new therapeutic agents against microbial infections.

REFERENCES

- [1]. Adegboye, M. F., Akinpelu, D. A., & Okoh, A. I. (2008). The bioactive and phytochemical properties of Garcinia kola (Heckel) seed extract on some pathogens. African journal of Biotechnology, **7**(21).
- [2]. Aggarwal, B. B., & Harikumar, K. B. (2009). Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. The international journal of biochemistry & cell biology, 41(1), 40-59.
- [3]. Aguiar, L. M., dos Santos, J. B., da Costa, V. A., Brito, L. A., Ferreira, E. A., Pereira, I. M., & Aspiazu, I. (2016). Herbicide tolerance and water use efficiency in forest species used in degraded areas recovery programs. Revista Bosque, 37(3), 493-500.
- [4]. Ahmad, A., & Ansari, S. H. (2022). A review on multipurpose medicinal properties of traditionally used Psidium guajava leaves. Asian Journal of Pharmaceutical and Clinical Research, 15(8), 9–22.
- [5]. Aiyegoro, O. A., Afolayan, A. J., & Okoh, A. I. (2009). In vitro antibacterial activities of crude extracts of the leaves of Helichrysum longifolium in combination with selected antibiotics. Afr J Pharm Pharmacol, 3(6), 293-300.
- [6]. Alamgir, A. N. M. (2017). Therapeutic use of medicinal plants and their extracts: volume 1. Springer International Publishing AG.
- [7]. Al-hebshi, N., Al-haroni, M., & Skaug, N. (2006). In vitro antimicrobial and resistance-modifying activities of aqueous crude khat extracts against oral microorganisms. Archives of oral biology, **51**(3), 183-188.
- [8]. Alt, S., Mitchenall, L. A., Maxwell, A., & Heide, L. (2011). Inhibition of DNA gyrase and DNA topoisomerase IV of Staphylococcus aureus and Escherichia coli by aminocoumarin antibiotics. Journal of antimicrobial chemotherapy, 66(9), 2061-2069.
- [9]. Ankri, S., & Mirelman, D. (1999). Antimicrobial properties of allicin from garlic. Microbes and infection, 1(2), 125-129.
- [10]. Arima, H., Ashida, H., & Danno, G. I. (2002). Rutin-enhanced antibacterial activities of flavonoids against Bacillus cereus and Salmonella enteritidis. Bioscience, biotechnology, and biochemistry, 66(5), 1009-1014.
- [11]. Assob, J. C., Kamga, H. L., Nsagha, D. S., Njunda, A. L., Nde, P. F., Asongalem, E. A., ... & Penlap, V. B. (2011). Antimicrobial and toxicological activities of five medicinal plant species from Cameroon Traditional Medicine. BMC complementary and alternative medicine, 11, 1-11.
- [12]. Azam, M. W., & Khan, A. U. (2019). Updates on the pathogenicity status of Pseudomonas aeruginosa. Drug discovery today, 24(1), 350-359.
- [13]. Bais, H. P., Walker, T. S., Kennan, A. J., Stermitz, F. R., & Vivanco, J. M. (2003). Structure-dependent phytotoxicity of catechins and other flavonoids: flavonoid conversions by cell-free protein extracts of Centaurea maculosa (spotted knapweed) roots. Journal of agricultural and food chemistry, 51(4), 897-901.
- [14]. Baker, R. E., Mahmud, A. S., Miller, I. F., Rajeev, M., Rasambainarivo, F., Rice, B. L., Takahashi, S., Tatem, A. J., Wagner, C. E., Wang, L., Wesolowski, A., & Metcalf, C. J. E. (2021). Infectious disease in an era of global change. Nature Reviews Microbiology, 20(4), 193–205.
- [15]. Baliga, M. S., & Dsouza, J. J. (2011). Amla (Emblica officinalis Gaertn), a wonder berry in the treatment and prevention of cancer. European Journal of Cancer Prevention, **20**(3), 225-239.
- [16]. Baliga, M. S., Meera, S., Mathai, B., Rai, M. P., Pawar, V., & Palatty, P. L. (2012). Scientific validation of the ethnomedicinal properties of the Ayurvedic drug Triphala: a review. Chinese Journal of Integrative Medicine, 18, 946-954.
- [17]. Bannister, B.A., Begg, N.T., & Gillespie, S.H. (2006). Infectious Disease. Blackwell Publishing.
- [18]. Baricevic, D., Sosa, S., Della Loggia, R., Tubaro, A., Simonovska, B., Krasna, A., & Zupancic, A. (2001). Topical antiinflammatory activity of Salvia officinalis L. leaves: the relevance of ursolic acid. Journal of ethnopharmacology, 75(2-3), 125-132.
- [19]. Bazzaz, B. S. F., Khameneh, B., Ostad, M. R. Z., & Hosseinzadeh, H. (2018). In vitro evaluation of antibacterial activity of verbascoside, lemon verbena extract and caffeine in combination with gentamicin against drug-resistant Staphylococcus aureus and Escherichia coli clinical isolates. Avicenna journal of phytomedicine, 8(3), 246.12.
- [20]. Bazzaz, B. S. F., Sarabandi, S., Khameneh, B., & Hosseinzadeh, H. (2016). Effect of catechins, green tea extract and methylxanthines in combination with gentamicin against Staphylococcus aureus and Pseudomonas aeruginosa: -combination therapy against resistant bacteria. Journal of pharmacopuncture, 19(4).
- [21]. Bhardwaj, S., Verma, R., & Gupta, J. (2018). Challenges and future prospects of herbal medicine. International Research in Medical and Health Sciences, 1(1), 12-15.
- [22]. Biernasiuk, A., Baj, T., & Malm, A. (2022). Clove essential oil and its main constituent, eugenol, as potential natural antifungals against Candida spp. alone or in combination with other antimycotics due to synergistic interactions. Molecules, **28**(1), 215.
- [23]. Biswas, K., Chattopadhyay, I., Banerjee, R. K., & Bandyopadhyay, U. (2002). Biological activities and medicinal properties of neem (Azadirachta indica). Current science, 1336-1345.
- [24]. Blanck, J. J., Huebner, T. M., Rolls, A. M., Cornell, J. S., & Hwang, C. S. (2022). Comprehensive review of the components in cat's claw (Uncaria tomentosa) and their antibacterial activity. AppliedChem, 2(1), 1-29.
- [25]. Boustie, J., & Grube, M. (2005). Lichens—a promising source of bioactive secondary metabolites. Plant Genetic Resources, 3(2), 273-287.
- [26]. Brunel, J. (1951). Antibiosis from Pasteur to Fleming. Journal of the History of Medicine and Allied Sciences, 287-301.
- [27]. Buchanan, R.E., & Gibbons, N.E. (1974). Bergey's Manual of Determinative Bacteriology (8th Edition). Williams & Wilkins.
- [28]. Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International journal of food microbiology, **94**(3), 223-253.
- [29]. Burt, S. A., Vlielander, R., Haagsman, H. P., & Veldhuizen, E. J. (2005). Increase in activity of essential oil components carvacrol and thymol against Escherichia coli O157: H7 by addition of food stabilizers. Journal of food protection, 68(5), 919-926.
- [30]. Calixto, J. B. (2000). Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Brazilian Journal of medical and Biological research, 33, 179-189.
- [31]. Capasso, C., & Supuran, C. T. (2014). Sulfa and trimethoprim-like drugs-antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors. Journal of enzyme inhibition and medicinal chemistry, 29(3), 379-387.
- [32]. Chainani-Wu, N. (2003). Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). The Journal of Alternative & Complementary Medicine, 9(1), 161-168.
- [33]. Cho H, Uehara T, Bernhardt TG.2014 Dec 4; Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell. **159**(6):1300-11.
- [34]. Cho, H., Uehara, T., & Bernhardt, T. G. (2014). Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell, **159**(6), 1300-1311.
- [35]. Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and molecular biology reviews, 65(2), 232-260.

- [36]. Coffeen, U., & Pellicer, F. (2019). Salvia divinorum: from recreational hallucinogenic use to analgesic and anti-inflammatory action. Journal of Pain Research, 1069-1076.
- [37]. Conly, J., & Stein, K. (1992). "The Production of Menaquinones (Vitamin K2) by Intestinal Bacteria and Their Role in Maintaining Coagulation Homeostasis." Annals of Internal Medicine, 116(5), 353–362.
- [38]. Croxen, M. A., & Finlay, B. B. (2009). Molecular mechanisms of Escherichia coli pathogenicity. Nature Reviews Microbiology, 8(1), 26–38.
- [39]. D Mogosanu, G., M Grumezescu, A., Huang, K. S., E Bejenaru, L., & Bejenaru, C. (2015). Prevention of microbial communities: novel approaches based natural products. Current pharmaceutical biotechnology, 16(2), 94-111.
- [40]. Darby, E. M., Trampari, E., Siasat, P., Gaya, M. S., Alav, I., Webber, M. A., & Blair, J. M. (2023). Molecular mechanisms of antibiotic resistance revisited. Nature Reviews Microbiology, 21(5), 280-295.
- [41]. Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and molecular biology reviews, 74(3), 417-433.
- [42]. Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and molecular biology reviews, 74(3), 417-433.
- [43]. de Oliveira Santos, J. V., da Costa Júnior, S. D., de Fátima Ramos dos Santos Medeiros, S. M., Cavalcanti, I. D. L., de Souza, J. B., Coriolano, D. L., ... & Cavalcanti, I. M. F. (2022). Panorama of bacterial infections caused by epidemic resistant strains. Current Microbiology, 79(6), 175.
- [44]. Denev, P., Kratchanova, M., Ciz, M., Lojek, A., Vasicek, O., Blazheva, D., & Hyrsl, P. (2014). Antioxidant, antimicrobial and neutrophil-modulating activities of herb extracts. Acta Biochimica Polonica, **61**(2), 359-367.
- [45]. Deutch, C. E. (2017). Limited effectiveness of over-the-counter plant preparations used for the treatment of urinary tract infections as inhibitors of the urease activity from Staphylococcus saprophyticus. Journal of applied microbiology, 122(5), 1380-1388.
- [46]. Donnelly, J. G. (2001). Folic acid. Critical reviews in clinical laboratory sciences, **38**(3), 183-223.
- [47]. Drabo, E. F. (2016). Essays on the Economics of Infectious Diseases (Doctoral dissertation, University of Southern California).
- [48]. Dutta, S., Sarkar, R., Bordoloi, K. P., Deka, C., & Sonowal, P. J. (2021). Bacteriophage therapy to combat antibiotic resistance: a brief review. Pharma Innov, 10(5), 389-394.
- [49]. Džidić, S., Šušković, J., & Kos, B. (2008). Antibiotic resistance mechanisms in bacteria: biochemical and genetic aspects. Food Technology & Biotechnology, 46(1).
- [50]. Efferth, T., & Koch, E. (2011). Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy. Current drug targets, 12(1), 122-132.
- [51]. El-Beshbishy, H. A., Singab, A. N. B., Sinkkonen, J., & Pihlaja, K. (2006). Hypolipidemic and antioxidant effects of Morus Alba L. (Egyptian mulberry) root bark fractions supplementation in cholesterol-fed rats. Life sciences, 78(23), 2724-2733.
- [52]. Emmerich, R., & Löw, O. (1899). Bakteriolytische Enzyme als Ursache der erworbenen Immunität und die Heilung von Infectionskrankheiten durch dieselben. Zeitschrift für Hygiene und Infektionskrankheiten, 31(1), 1-65.
- [53]. Fàbrega, A., Madurga, S., Giralt, E., & Vila, J. (2009). Mechanism of action of and resistance to quinolones. Microbial biotechnology, 2(1), 40-61.
- [54]. Farooqui, A., Khan, A., Borghetto, I., Kazmi, S. U., Rubino, S., & Paglietti, B. (2015). Synergistic antimicrobial activity of Camellia sinensis and Juglans regia against multidrug-resistant bacteria. PloS one, 10(2), e0118431.
- [55]. Fernandes, R., Amador, P., & Prudêncio, C. (2013). β-Lactams: chemical structure, mode of action and mechanisms of resistance. Reviews and Research in Medical Microbiology, 24(1), 7-17.
- [56]. Fernandez, A., & Cock, I. E. (2020). Tabebuia impetiginosa (Mart. Ex DC. Mattos) bark extracts inhibit the growth gastrointestinal bacterial pathogens and potentiate the activity of some conventional antibiotics. Pharmacognosy Communications, 10(2), 75-82.
- [57]. Fernández-Billón, M., Llambías-Cabot, A. E., Jordana-Lluch, E., Oliver, A., & Macià, M. D. (2023). Mechanisms of antibiotic resistance in Pseudomonas aeruginosa biofilms. Biofilm, 5, 100129.
- [58]. Fleiszig, S. M., Evans, D. J., Do, N., Vallas, V., Shin, S., & Mostov, K. E. (1997). Epithelial cell polarity affects susceptibility to Pseudomonas aeruginosa invasion and cytotoxicity. Infection and Immunity, 65(7), 2861-2867.
- [59]. Fleming, A.(1929). On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. British journal of experimental pathology, **10**(3), 226.
- [60]. Frenkel, L.D. (2020). "The Development of the Human Papillomavirus (HPV) Vaccine and Its Role in Preventing Cervical Cancer." Discovery Medicine, 29(159), 51–59.
- [61]. Friedman, M. (2007). Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Molecular nutrition & food research, **51**(1), 116-134.
- [62]. Frost, W. D. (1904). The antagonism exhibited by certain saprophytic bacteria against the Bacillus typhosus Gaffky. University of Chicago Press, 1(1-44).
- [63]. Gallucci, N., Casero, C., Oliva, M., Zygadlo, J., & Demo, M. (2006). Interaction between terpenes and penicillin on bacterial strains resistant to beta-lactam antibiotics. Mol. Med. Chem, **10**(1), 30-32.
- [64]. GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022 Dec 17; 400(10369).
- [65]. Gelpi, A., Gilbertson, A., & Tucker, J. D. (2015). Magic bullet: Paul Ehrlich, Salvarsan and the birth of venereology. Sexually transmitted infections, 91(1), 68-69.
- [66]. Ghahremaninejad, F., Bidarlord, M., & Attar, F. (2012). Floristic study of steppe parts of Lissar protected area (N Iran).
- [67]. Ghosh, A., Das, B. K., Roy, A., Mandal, B., & Chandra, G. (2008). Antibacterial activity of some medicinal plant extracts. Journal of natural medicines, 62, 259-262.
- [68]. Gholamnezhad, Z., Havakhah, S., & Boskabady, M. H. (2016). Preclinical and clinical effects of Nigella sativa and its constituent, thymoquinone: A review. Journal of ethnopharmacology, 190, 372-386.
- [69]. Gholamnezhad, Z., Havakhah, S., & Boskabady, M. H. (2016). Preclinical and clinical effects of Nigella sativa and its constituent, thymoquinone: A review. Journal of ethnopharmacology, 190, 372-386.
- [70]. Gibbons, S., Oluwatuyi, M., Veitch, N. C., & Gray, A. I. (2003). Bacterial resistance modifying agents from Lycopus europaeus. Phytochemistry, **62**(1), 83-87.
- [71]. Gilbert, D. M. (2001). Making sense of eukaryotic DNA replication origins. Science, 294(5540), 96-100.
- [72]. Grice, E. A., & Segre, J. A. (2011). The skin microbiome. Nature reviews microbiology, 9(4), 244-253.
- [73]. Gupta, S., & Ravishankar, S. (2005). A comparison of the antimicrobial activity of garlic, ginger, carrot, and turmeric pastes against Escherichia coli O157: H7 in laboratory buffer and ground beef. Foodbourne Pathogens & Disease, 2(4), 330-340.
- [74]. Gutiérrez, R. M. P., Mitchell, S., & Solis, R. V. (2008). Psidium guajava: A review of its traditional uses, phytochemistry and pharmacology. Journal of ethnopharmacology, 117(1), 1-27.

- [75]. Haas, L. F. (1999). Papyrus of Ebers and Smith. Journal of Neurology, Neurosurgery & Psychiatry, 67(5), 578-578.
- [76]. Hammoudi Halat, D., Krayem, M., Khaled, S., & Younes, S. (2022). A focused insight into thyme: Biological, chemical, and therapeutic properties of an indigenous Mediterranean herb. Nutrients, **14**(10), 2104.
- [77]. Harbarth, S., Balkhy, H. H., Goossens, H., Jarlier, V., Kluytmans, J., Laxminarayan, R., & World Healthcare-Associated Infections Resistance Forum participants. (2015). Antimicrobial resistance: one world, one fight!
- [78]. Harrison, F., Roberts, A. E., Gabrilska, R., Rumbaugh, K. P., Lee, C., & Diggle, S. P. (2015). A 1,000-year-old antimicrobial remedy with antistaphylococcal activity. MBio, **6**(4), 10-1128.
- [79]. Hemeg, H. A., Moussa, I. M., Ibrahim, S., Dawoud, T. M., Alhaji, J. H., Mubarak, A. S., & Marouf, S. A. (2020). Antimicrobial effect of different herbal plant extracts against different microbial population. Saudi Journal of Biological Sciences, 27(12), 3221-3227.
- [80]. Hirsch, J., & Klostermeier, D. (2021). What makes a type IIA topoisomerase a gyrase or a Topo IV? Nucleic Acids Research, 49(11), 6027-6042.
- [81]. J. Ravel, P. Gajer, Z. Abdo, G.M. Schneider, S.S.K. Koenig, S.L. McCulle, S. Karlebach, R. Gorle, J. Russell, C.O. Tacket, R.M. Br otman, C.C. Davis, K. Ault, L. Peralta, L.J. (2010). Forney, Vaginal microbiome of reproductive-age women, Proc. Natl. Acad. Sci. U.S.A.
- [82]. Jones, W. P., & Kinghorn, A. D. (2012). Extraction of plant secondary metabolites. Natural products isolation, 341-366.
- [83]. Kabera, J. N., Semana, E., Mussa, A. R., & He, X. (2014). Plant secondary metabolites: biosynthesis, classification, function and pharmacological properties. J. Pharm. Pharmacol, 2(7), 377-392.
- [84]. Kang, H. K., & Park, Y. (2015). Glycopeptide antibiotics: Structure and mechanisms of action. Journal of Bacteriology and Virology, 45(2), 67-78.
- [85]. Katz, L., & Baltz, R. H. (2016). Natural product discovery: past, present, and future. Journal of Industrial Microbiology and Biotechnology, 43(2-3), 155-176.
- [86]. Kengni, F., Fodouop, S. P., Tala, D. S., Djimeli, M. N., Fokunang, C., & Gatsing, D. (2016). Antityphoid properties and toxicity evaluation of Harungana madagascariensis Lam (Hypericaceae) aqueous leaf extract. Journal of ethnopharmacology, 179, 137-145.
- [87]. Khan, U. H., Mir, M. A., Ahmad, F., Mir, M. H., Bali, N. K., Lal, R. B., Broor, S. S., & Koul, P. A. (2013). An outbreak of influenza B in an isolated nomadic community in Jammu & Kashmir, India. Indian Journal of Medical Research, 138(6), 935–937.
- [88]. Kim, K. H., Tsao, R., Yang, R., & Cui, S. W. (2012). Phenolic Acid Profiles and Antioxidant Activities of Wheat Bran Extracts. Journal of Agricultural and Food Chemistry, 60(1), 131–138.
- [89]. Kim, K. H., Tsao, R., Yang, R., & Cui, S. W. (2014). Phenolic Acid Profiles and Antioxidant Activities of Wheat Bran Extracts. Journal of Food and Nutrition Research, 2(5), 263-269.
- [90]. Kim, K. J., Yu, H. H., Cha, J. D., Seo, S. J., Choi, N. Y., & You, Y. O. (2005). Antibacterial activity of Curcuma longa L. against methicillin-resistant Staphylococcus aureus. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 19(7), 599-604.
- [91]. Klassen, J. L. (2014). Microbial secondary metabolites and their impacts on insect symbioses. Current opinion in insect science, 4, 15-22.
- [92]. Kosakowska, O., Węglarz, Z., Styczyńska, S., Synowiec, A., Gniewosz, M., & Bączek, K. (2024). Activity of Common Thyme (Thymus vulgaris L.), Greek Oregano (Origanum vulgare L. ssp. hirtum), and Common Oregano (Origanum vulgare L. ssp. vulgare) Essential Oils against Selected Phytopathogens. Molecules, 29(19), 4617.
- [93]. Kumar, V., Abbas, A.K., Aster, J.C. (2014). Robbins and Cotran Pathologic Basis of Disease (9th Edition).
- [94]. Kumar, S., & Pandey, A. K. (2012). Antioxidant, lipo-protective and antibacterial activities of phytoconstituents present in Solanum xanthocarpum root. International Review of Biophysical Chemistry, 3(3), 42-47.
- [95]. Kuroda, M., Ohta, T., Uchiyama, I., Baba, T., Yuzawa, H., Kobayashi, I., & Hiramatsu, K. (2001). Whole genome sequencing of meticillin-resistant Staphylococcus aureus. The Lancet, 357(9264), 1225-1240.
- [96]. Lahiri, D., Dash, S., Dutta, R., & Nag, M. (2019). Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. Journal of biosciences, 44(2), 52.
- [97]. Laskin, J. D., Heck, D. E., & Laskin, D. L. (2002). The ribotoxic stress response as a potential mechanism for MAP kinase activation in xenobiotic toxicity. Toxicological Sciences, 69(2), 289-291.
- [98]. Lane, N., 2015. The Vital Question: Energy, Evolution, and the Origins of Complex Life. Norton.
- [99]. Latgé, J.P. (1999). "Aspergillus fumigatus and Aspergillosis." Clinical Microbiology Reviews, **12**(2), 310–350.
- [100]. Lau, D., & Plotkin, B. J. (2013). Antimicrobial and biofilm effects of herbs used in traditional Chinese medicine. Natural Product Communications, 8(11), 1934578X1300801129.
- [101]. Li, J., Hu, D., Song, X., Han, T., Gao, Y., & Xing, Y. (2017). The role of biologically active ingredients from natural drug treatments for arrhythmias in different mechanisms. BioMed Research International, 2017(1), 4615727.
- [102]. Li, Y., & Araki, H. (2013). Loading and activation of DNA replicative helicases: the key step of initiation of DNA replication. Genes to Cells, 18(4), 266-277.
- [103]. Lloyd-Price, J., Abu-Ali, G., & Huttenhower, C. (2016). The healthy human microbiome. Genome medicine, 8, 1-11.
- [104]. Lowy, F. D. (1998). Staphylococcus aureus infections. New England journal of medicine, **339**(8), 520-532.
- [105]. Lutterodt, G., Ismail, A., Basheer, R., & Baharudin, H. M. (1999, July1). Antimicrobial Effects of Psidium Guajava Extract as One Mechanism of its Antidiarrhoeal Action. Malaysian Journal of Medical Sciences, 6(2), 17-20.
- [106]. Lyczak JB, Cannon CL, Pier GB. 2000 Jul. Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist. Microbes Infection; 2(9):1051-60.
- [107]. Madigan, M. T., Martinko, J. M., & Stahl, D. A. (2012). Clark DP Brock Biology of Microorganisms.
- [108]. Maheshwari, R. K., Singh, A. K., Gaddipati, J., & Srimal, R. C. (2006). Multiple biological activities of curcumin: a short review. Life sciences, 78(18), 2081-2087.
- [109]. Mahmoud, G. A. E., Rashed, N. M., El-Ganainy, S. M., & Salem, S. H. (2024). Unveiling the Neem (Azadirachta indica) Effects on Biofilm Formation of Food-Borne Bacteria and the Potential Mechanism Using a Molecular Docking Approach. Plants, 13(18), 2669.
- [110]. Maiyo, Z. C., Ngure, R. M., Matasyoh, J. C., & Chepkorir, R. (2010). Phytochemical Constituents and Antimicrobial Activity of Leaf Extracts of Three Amaranthus Plant Species. African Journal of Biotechnology, 9(21).
- [111]. Marnewick, J., Joubert, E., Joseph, S., Swanevelder, S., Swart, P., & Gelderblom, W. (2005). Inhibition of tumour promotion in mouse skin by extracts of rooibos (Aspalathus linearis) and honeybush (Cyclopia intermedia), unique South African herbal teas. Cancer letters, 224(2), 193-202.

- [112]. Masyita, A., Sari, R. M., Astuti, A. D., Yasir, B., Rumata, N. R., Emran, T. B., ... & Simal-Gandara, J. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food chemistry: X, 13, 100217.
- [113]. Matasyoh, J. C., Maiyo, Z. C., Ngure, R. M., & Chepkorir, R. (2009). Chemical composition and antimicrobial activity of the essential oil of Coriandrum sativum. Food Chemistry, **113**(2), 526-529.
- [114]. Mbah-Omeje, K. N. (2019). In Vitro Study on the Antimicrobial Activity of Curcuma Longa Rhizome on Some Microorganism. American Journal of Biomedical and Life Sciences, 7(1), 1-5.
- [115]. Merkl, R., HRádkoVá, I., FIIIp, V., & ŠMIdRkal, J. (2010). Antimicrobial and antioxidant properties of phenolic acids alkyl esters.
- [116]. Mohideen, M., Abidin, N. S. I. Z., Idris, M. I. H., & Kamaruzaman, N. A. (2022). An overview of antibacterial and antifungal effects of Azadirachta indica crude extract: A narrative review.
- [117]. Morel, C., Stermitz, F. R., Tegos, G., & Lewis, K. (2003). Isoflavones as potentiators of antibacterial activity. Journal of Agricultural and Food Chemistry, 51(19), 5677-5679.
- [118]. Mukhtar, H. M., Ansari, S. H., Bhat, Z. A., Naved, T., & Singh, P. (2006). Antidiabetic activity of an ethanol extract obtained from the stem bark of Psidium guajava (Myrtaceae). Die Pharmazie-An International Journal of Pharmaceutical Sciences, 61(8), 725-727.
- [119]. Murray, C. J., Ikuta, K. S., Sharara, F., Swetschinski, L., Aguilar, G. R., Gray, A., & Tasak, N. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The lancet, **399**(10325), 629-655.
- [120]. National Academies Press (US). (1999). Correlates of smallest sizes for microorganisms. Size Limits of Very Small Microorganisms.
- [121]. Nemzer, B. V., Al-Taher, F., Yashin, A., Revelsky, I., & Yashin, Y. (2022). Cranberry: chemical composition, antioxidant activity and impact on human health: overview. Molecules, **27**(5), 1503.
- [122]. Njume, C., & Goduka, N. I. (2012). Treatment of diarrhoea in rural African communities: an overview of measures to maximise the medicinal potentials of indigenous plants. International journal of environmental research and public health, 9(11), 3911-3933.
- [123]. Oliveira, R. A., Lima, E. O., Vieira, W. L., Freire, K. R. L., Trajano, V. N., Lima, I. O., ... & Silva-Filho, R. N. (2006). Study of the interference of essential oils on the activity of some antibiotic used clinically. Revista Brasileira de Farmacognosia, 16, 77-82.
- [124]. Oliver, A., Mulet, X., López-Causapé, C., & Juan, C. (2015). "The Increasing Threat of Pseudomonas aeruginosa High-Risk Clones." FEMS Microbiology Reviews, 39(4), 520–553.
- [125]. Oliver, A., Mulet, X., López-Causapé, C., & Juan, C. (2015). The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resistance Updates, 21, 41-59.
- [126]. Omar, G., Abdallah, L., Rahim, A., Othman, R., & Barakat, A. (2017). Selected wild plants ethanol extracts bioactivity on the coagulation cascade. Journal of Scientific Research and Reports, 13(6), 1-10.
- [127]. Orszulik, S. T. (2024). The quality of antimicrobial susceptibility test discs and implications for clinical outcomes. Diagnostic Microbiology and Infectious Disease, 116237.
- [128]. Otto, M. (2012). MRSA virulence and spread. Cellular microbiology, 14(10), 1513-1521.
- [129]. Pang, Z., Raudonis, R., Glick, B. R., Lin, T. J., & Cheng, Z. (2019). Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and alternative therapeutic strategies. Biotechnology advances, 37(1), 177-192.
- [130]. Pandey, A., & Tripathi, S. (2014). Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. Journal of Pharmacognosy and phytochemistry, 2(5), 115-119.
- [131]. Patel, Y., Soni, V., Rhee, K. Y., & Helmann, J. D. (2023). Mutations in rpoB that confer rifampicin resistance can alter levels of peptidoglycan precursors and affect β-lactam susceptibility. MBio, 14(2), e03168-22.
- [132]. Phitaktim, S., Chomnawang, M., Sirichaiwetchakoon, K., Dunkhunthod, B., Hobbs, G., & Eumkeb, G. (2016). Synergism and the mechanism of action of the combination of α-mangostin isolated from Garcinia mangostana L. and oxacillin against an oxacillin-resistant Staphylococcus saprophyticus. BMC microbiology, 16, 1-14.
- [133]. Pilarski, R., Zieliński, H., Ciesiołka, D., & Gulewicz, K. (2006). Antioxidant activity of ethanolic and aqueous extracts of Uncaria tomentosa (Willd.) DC. Journal of ethnopharmacology, 104(1-2), 18-23.
- [134]. Prajescu, B., Gavriliu, L., Iesanu, M. I., Ioan, A., Boboc, A. A., Boboc, C., & Galos, F. (2023). Bacterial Species and Antibiotic Resistance—A retrospective analysis of bacterial cultures in a pediatric hospital. Antibiotics, 12(6), 966.
- [135]. Prakash, P. A. G. N., & Gupta, N. (2005). Therapeutic uses of Ocimum sanctum Linn (Tulsi) with a note on eugenol and its pharmacological actions: a short review. Indian journal of physiology and pharmacology, 49(2), 125.
- [136]. Premlatha, M. (2019). Microbial resistance to antibiotics. Bacterial Adaptation to Co-resistance, 61-80.
- [137]. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., & Wang, J. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, **464**(7285), 59-65.
- [138]. Radulovic, N. S., Blagojevic, P. D., Stojanovic-Radic, Z. Z., & Stojanovic, N. M. (2013). Antimicrobial plant metabolites: structural diversity and mechanism of action. Current medicinal chemistry, 20(7), 932-952.
- [139]. Rodrigues, E., & Barnes, J. (2013). Pharmacovigilance of herbal medicines: the potential contributions of ethnobotanical and ethnopharmacological studies. Drug safety, 36, 1-12.
- [140]. Rajasekaran, D., Palombo, E. A., Yeo, T. C., Ley, D. L. S., Tu, C. L., Malherbe, F., & Grollo, L. (2014). Evidence of synergistic activity of medicinal plant extracts against neuraminidase inhibitor resistant strains of influenza viruses. Advances in Microbiology, 4(16), 1260.
- [141]. Ranković, B., & Kosanić, M. (2019). Lichens as a potential source of bioactive secondary metabolites. Lichen secondary metabolites: bioactive properties and pharmaceutical potential, 1-29.
- [142]. Romandini, A., Pani, A., Schenardi, P. A., Pattarino, G. A. C., De Giacomo, C., & Scaglione, F. (2021). Antibiotic resistance in pediatric infections: global emerging threats, predicting the near future. Antibiotics, 10(4), 393.
- [143]. Russo, A., Formisano, C., Rigano, D., Senatore, F., Delfine, S., Cardile, V., & Bruno, M. (2013). Chemical composition and anticancer activity of essential oils of Mediterranean sage (Salvia officinalis L.) grown in different environmental conditions. Food and Chemical Toxicology, 55, 42-47.
- [144]. Sabtu, N., Enoch, D. A., & Brown, N. M. (2015). Antibiotic resistance: what, why, where, when and how? British medical bulletin, **116**(1).
- [145]. Saleem, M., Nazir, M., Ali, M. S., Hussain, H., Lee, Y. S., Riaz, N., & Jabbar, A. (2010). Antimicrobial natural products: an update on future antibiotic drug candidates. Natural product reports, **27**(2), 238-254.
- [146]. Sandur, S. K., Pandey, M. K., Sung, B., Ahn, K. S., Murakami, A., Sethi, G., ... & Aggarwal, B. B. (2007). Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis, 28(8), 1765-1773.
- [147]. Savoia, D. (2012). Plant-derived antimicrobial compounds: alternatives to antibiotics. Future microbiology, 7(8), 979-990.

- [148]. Seipke, R. F., Kaltenpoth, M., & Hutchings, M. I. (2012). Streptomyces as symbionts: an emerging and widespread theme? FEMS microbiology reviews, 36(4), 862-876.
- [149]. Shahat, A. A., Pieters, L., Apers, S., Nazeif, N. M., Abdel-Azim, N. S., Vanden Berghe, D., & Vlietinck, A. J. (2001). Chemical and biological investigations on Zizyphus spina-christi L. Phytotherapy Research, 15(7), 593–597.
- [150]. Shin, I. S., Masuda, H., & Naohide, K. (2004). Bactericidal activity of wasabi (Wasabia japonica) against Helicobacter pylori. International Journal of Food Microbiology, 94(3), 255-261.
- [151]. Shin, S. (2003). Anti-Aspergillus activities of plant essential oils and their combination effects with ketoconazole or amphotericin B. Archives of pharmacal research, 26, 389-393.
- [152]. Shree, P., Singh, C. K., Sodhi, K. K., Surya, J. N., & Singh, D. K. (2023). Biofilms: Understanding the structure and contribution towards bacterial resistance in antibiotics. Medicine in Microecology, **16**, 100084.
- [153]. Sodhi, K. K., & Singh, C. K. (2022). Recent development in the sustainable remediation of antibiotics: a review. Total Environment Research Themes, 3, 100008.
- [154]. Stefanovic, O., & Comic, L. (2012). Synergistic antibacterial interaction between Melissa officinalis extracts and antibiotics. Journal of applied pharmaceutical science, (Issue), 01-05.
- [155]. Stermitz, F. R., Lorenz, P., Tawara, J. N., Zenewicz, L. A., & Lewis, K. (2000). Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5'-methoxyhydnocarpin, a multidrug pump inhibitor. Proceedings of the National Academy of Sciences, 97(4), 1433-1437.
- [156]. Stermitz, F. R., Tawara-Matsuda, J., Lorenz, P., Mueller, P., Zenewicz, L., & Lewis, K. (2000). 5 '-Methoxyhydnocarpin-D and Pheophorbide a: Berberi's species components that potentiate Berberine growth inhibition of resistant staphylococcus aureus. Journal of natural products, 63(8), 1146-1149.
- [157]. Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., ... & Olson, M. V. (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406(6799), 959-964.
- [158]. Strateva, T., & Yordanov, D. (2009). Pseudomonas aeruginosa-a phenomenon of bacterial resistance. Journal of medical microbiology, 58(9), 1133-1148.
- [159]. Susalit, E., Agus, N., Effendi, I., Tjandrawinata, R. R., Nofiarny, D., Perrinjaquet-Moccetti, T., & Verbruggen, M. (2011). Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: comparison with Captopril. Phytomedicine, 18(4), 251-258.
- [160]. Syroegin, E. A., Flemmich, L., Klepacki, D., Vazquez-Laslop, N., Micura, R., & Polikanov, Y. S. (2022). Structural basis for the context-specific action of the classic peptidyl transferase inhibitor chloramphenicol. Nature structural & molecular biology, 29(2), 152-161.
- [161]. Talwar, G. P., Vanshi, P. R., Misra, R., Mukherjee, S., & Shah, S. (1997). Plant immunomodulators for termination of unwanted pregnancy and for contraception and reproductive health. Immunology and cell biology, 75(2), 190-192.
- [162]. Tenover, F. C. (2006). Mechanisms of antimicrobial resistance in bacteria. The American journal of medicine, **119**(6).
- [163]. Tenson, T., Lovmar, M., & Ehrenberg, M. (2003). The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. Journal of molecular biology, **330**(5), 1005-1014.
- [164]. Traxler, M. F., & Kolter, R. (2015). Natural products in soil microbe interactions and evolution. Natural product reports, 32(7), 956-970.
- [165]. Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027-1031.
- [166]. Tyagi, P., Singh, M., Kumari, H., Kumari, A., & Mukhopadhyay, K. (2015). Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PloS one, 10(3), e0121313.
- [167]. Vadhana, P., Singh, B. R., Bharadwaj, M., & Singh, S. V. (2015). Emergence of herbal antimicrobial drug resistance in clinical bacterial isolates. Pharm Anal Acta, 6(10), 434.
- [168]. Van Gerwen, O. T., Muzny, C. A., & Marrazzo, J. M. (2022). Sexually transmitted infections and female reproductive health. Nature Microbiology, 7(8), 1116–1126.
- [169]. Van Vuuren, S. F., Suliman, S., & Viljoen, A. M. (2009). The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Letters in applied microbiology, 48(4), 440-446.
- [170]. van Vuuren, S., & Viljoen, A. (2011). Plant-based antimicrobial studies-methods and approaches to study the interaction between natural products. Planta medica, 77(11), 1168-1182.
- [171]. Varela, M. F., Stephen, J., Lekshmi, M., Ojha, M., Wenzel, N., Sanford, L. M., & Kumar, S. H. (2021). Bacterial resistance to antimicrobial agents. Antibiotics, 10(5), 593.
- [172]. Vicens, Q., & Westhof, E. (2003). RNA as a drug target: the case of aminoglycosides. ChemBioChem, 4(10), 1018-1023.
- [173]. Wainstein, J., Ganz, T., Boaz, M., Bar Dayan, Y., Dolev, E., Kerem, Z., & Madar, Z. (2012). Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. Journal of medicinal food, 15(7), 605-610.
- [174]. Waksman, S. A. (1947). What is an antibiotic or an antibiotic substance? Mycologia, 39(5), 565-569.
- [175]. Wangchuk, P., Keller, P. A., Pyne, S. G., Taweechotipatr, M., Tonsomboon, A., Rattanajak, R., & Kamchonwongpaisan, S. (2011). Evaluation of an ethnopharmacologically selected Bhutanese medicinal plants for their major classes of phytochemicals and biological activities. Journal of Ethnopharmacology, 137(1), 730-742.
- [176]. Wagner, H., & Ulrich-Merzenich, G. (2009). Synergy research: approaching a new generation of phytopharmaceuticals. Phytomedicine, 16(2-3), 97-110.
- [177]. Wink, M. (2015). Modes of action of herbal medicines and plant secondary metabolites. Medicines, 2(3), 251-286.
- [178]. Yadav, E., Kumar, S., Mahant, S., Khatkar, S., & Rao, R. (2017). Tea tree oil: a promising essential oil. Journal of Essential Oil Research, 29(3), 201-213.
- [179]. Yousefzadi, M., Mirjalili, H. M., Alnajar, N., Zeinali, A., & Parsa, M. (2011). Composition and in vitro antimicrobial activity of the essential oil of Dorema ammoniacum D. Don. Fruit from Iran. Journal of the Serbian Chemical Society, 76(6), 857-863.
- [180]. Zhou, G., Shi, Q. S., Huang, X. M., & Xie, X. B. (2015). The three bacterial lines of defense against antimicrobial agents. International journal of molecular sciences, 16(9), 21711-21733.